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1. INTRODUCTIO

K In these lectures i a theory of functions and relations that are
computable and specifiable, uniformly over a class of many sorted algebras.
Such a class K of algebras is a mathematical model of the semantics of a
software module; in particular, a module defining an abstract data type. The
theory of computation, specification and verification over K has many
applications; those I will describe concern the following subjects:

(program specification and verification;
logic programming modules and abstract data types; and
synchronous concurrent algorithms and their application in hardware
design<,, Po;, .a,

< -MY research on these apparently disparate applications is part of a-piegimeki,
based on the algebraic theory of abstract data types, -that aims at the formulation
and analysis of the many interesting notions of computability, specifiability, and ,

verifiability that exist in different areas of computer science and mathematics. (L g)
The material in these lectures is based on collaborative work with J I Zucker
(SUNY, Buffalo) and B C Thompson (Manchester).

Origins
The rathematical theory presented is a generalisation of classical computability



theory on the natural numbers, or on strings of symbols, to any abstract
algebra. The theory of computability for algebras originates with work by E
Engeler in 1965. Subsequent well-publicised work in logic by H Friedman and
Y N Moschovakis, and in computer science by D Luckham, D Park and M
Paterson, Z Manna and A Chandra, and A J Kfoury has also been significant:
see Shepherdson [85] and Tucker and Zucker 188].

The models of computation used in these lectures are those developed in
Tucker and Zucker [881. In this monograph, the semantic and correctness
theories of while programs, while array programs, and recursive programs
established in de Bakker [80] are generalised to allow programs that compute
not simply on the natural numbers but on any abstract data type. In addition,
error or exceptional states are introduced into the semantics, which arise when a
variable is called in a computation without first being initialised. These
enhancements involved mathematical work on: many sorted algebras A and
classes K of many sorted algebras; error and exceptions in semantics and proof
rules; weak second order logic assertion languages; and the theory of
computable functions on A and K. The basic semantical theory of programs on
which we relied is that in de Bakker [80].

Summary
In Lecture I some important concepts conceming abstract data types will be
explained, including the technical r6le of classes of algebras.

Lecture 2 summarises the computability theory on abstract data types as it
stands in Tucker and Zucker [88]; it includes the Generalised Church-Turing
Thesis for the process of deterministic parallel computation on abstract data
types. This computability theory is founded upon recursive functions on
algebras and classes of algebras. An important point is that it distinguishes
between primitive recursion and course-of-values recursion, as these are not
equivalent on abstract algebras.

Lecture 3 begins with the study of program specifications and their validity
over a class K: for S a program and pq input and output conditions we consider
properties of the condition that

K /= (p) S (q)
which means that executing S on inputs satisfying p results in outputs satisfying
q, on each A in K. The computability theory of Lecture 2 was developed to
prove that important sets of program states, such as the weakest preconditions
and strongest post conditions of programs and conditions, were expressible in a
weak second order many sorted logical language. At the heart of this exercise is
a theorem that represents generalised recursively enumerable sets in the
language. Next the idea of a module appropriate for logic programming is
examined. This requires us to distinguish more carefully between specification
and computation, and to begin work on the scope and limits of methods for the
specification oi relations on abstract data types, to complement the computation
theory described in Lecture 2. This work with J I Zucker is a natural
continuation of our studies of subjects that we first met in the preparation of

2



our book.
In Lectures 4 and 5 the idea of a synchronous concurrent algorithm (sca) is

defined and studied. A sca is a network of processors and channels that compute
and communicate in parallel, synchronised by a global clock. Such algorithms
compute on infinite streams of data and are characteristic of hardware.
Examples of scas include: clocked hardware; systolic algorithms; neural nets;
cellular automata; and coupled map lattice dynamical systems. This type of
computation is formalised using the course-of-values recursive functions over
classes of stream algebras. The study of this and other models of these clocked
algorithms, and their application, is a substantial task: it aims at a general
mathematical theory of computation based on hardware. The special case of unit
delays throughout the network corresponds with the use of primitive recursive
functions and has been studied intensively in joint work with B C Thompson
(Manchester). Significant contributions to the theory and to the development of
case studies have been made by: K Meinke (ETH, Zurich), N A Harman
(Swansea); S M Eker and K Hobley (Leeds). The application of the ideas to
software for simulation and verification has begun in work by A R Martin
(Infospec Computers Ltd) and G Lajos (Leeds). Some of these contributions
will be surveyed in Lecture 5.

Acknowledgements
I would like to thank J Derrick, K Hobley, G Lajos, K Meinke, T E Rihll, H
Simmons, B C Thompson, S S Wainer, and J I Zucker for valuable
conversations in the course of preparing these lectures.

1. LECTURE 1: ALGEBRAS, MODULES AND ABSTRACT DATA
TYPES

1.1 Modules and algebras
In the theory of abstract data types, computation is characterised by a module
the semantics of which is a class K of many-sorted algebraic structures or
models. A many-sorted algebraic structure or model A consists of a number of .
sets of data, operations, and relations on the data. Such a structure, possibly
satisfying some further properties, can be used to model semantically a concrete
implementation of a module. A class K of structures, again possibly satisfying W
some further properties, can be used to model semantically the module
abstractly as a class of implementations. For example, one standard definition of 0)
an abstract data type is that it is an isomorphism type i.e. a class of all
isomorphic copies of an algebra: see Goguen, Thatcher, Wagner and Wright
[78]. Among the properties of algebras that we will use to characterise
meaningful or useful implementations are: minimality, initiality, and I
computability (see 2.3).

See Ehrig and Mahr [85] and Meinke and Tucker [89] for background dee
material on algebra.
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1.2 Modularisation
Consider the general idea that programming can be formulated as the creation
of modules:

Programming creates a program module P from a component module C
in order to obtain a task module T.

Consider a programming task in the case when the modules define
implementation algebras. Suppose we want to compute a function F and a
relation R on a set A using operations f, and relations ri . Then the task algebra
is (A:FR) and the component algebra is (A: f: ri). The program may introduce
a new data set B and functions gj and relations sj leading to program algebra (A,
B: fi, gj, F: r i, sp, R). Of course this generalises to the case of many sets in the
obvious way. To a user the finished product is the task algebra, and only the
function F and the relation R are visible, for the fi, gj and ri , sy are hidden.
When, in the normal case, the modules define classes of implementation
algebras, we uniformise the above. These ideas are derived from those of R
Burstall and J Goguen.

1.3 Classes of models
For the purposes of specification and verification, we expect K to be a subclass
of Mod(T), the class of all models of some axiomatic theory T. Among the
classes of interest are:

K=Mod(T) K=(A e Mod(T): A is finite)
K= (A e Mod(T): A is computable) K=(Ae Mod(T): A is semicomputable)
K= (A eMod(T): A is initial) K= (A e Mod(T): A is final)

Each of these classes formalises an interesting aspect of the semantics of T. For
example, consider initiality and computability. If model A is initial then it is
(isomorphic to) a certain form of standard implementation by computer. To
study the computation of F and R with respect to this K is to study the
properties of a program module for F and R uniformly across all standard
implementations. That a model A is computable means that it is implementable
in some way by computer, according to the classical Church-Turing Thesis. To
study the properties of F and R with respect to this K is to study the properties
of a program module for F and R uniformly across all possible computer
implementations.

1.4 Higher-order computation and logic
Many sorted algebra and logic may be employed as a unified framework for
representing higher order computation and logic. For example, two forms of
second order computation and logic over a structure A can be reprerented by
applying first order computation and logic to the extended structuri, A and
A*, being A with streams, and arrays adjoined (wit'i z -,,ropria-e e.I;1uation
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operations), respectively.

1.4.1 Augmentation of time cycles and streams Let A be an algebra and
add to the carriers of A a set T of natural numbers and, for each carrier Ai of
A, the set [T -4 Ad of functions T -4 Ai or streams over A1. To the operations
of A we add the constant 0 and operation of successor t+1 on T, and

evali :T -4 Ai defined by evali(t,a)= a(t).
Let this new algebra be A.

1.4.2 Augmentation of arrays Let A be an algebra and add to the carriers
of A a set of natural numbers T and the simple constant 0 and operation of
successor t+1 on T. Next add an undefined symbol ui to each carrier Ai of A,
and extend the operations by strictness. This forms an algebra Au with carriers
Ai,u = Ai u [u). We model a finite array over Ai by a pair (a, I) where

a: T -: Ai,u and l e T such that a(t) = u for all t > 1.
Thus the pair is an infinite array, uninitialised almost everywhere. Let Ai* be
the set of all such pairs. We add these sets to the algebra Au to create carriers of
the array algebra A*. The new constants and operations of A* are: the
everywhere undefined array; functions that evaluate an array at a number
address; update an array by an element at a number address; evaluate the length
and update the length.

We will use both extensions of A in the next sections. The second
augmentation is an enhancement of the array algebras that we made in Tucker
and Zucker [89]. It has many interesting extensions and potential applications.

2. LECTURE 2: COMPUTABILITY THEORY

2.1 Computable functions on abstract data types
In Tucker and Zucker [88] we have examined some classes of functions over an
adt that are generated from its basic operations by means of

sequential composition;
parallel composition;
simultaneous primitive recursion;
simultaneous course of values (cov) recursion;
search operators.

These function building operations are defined by straightforward
generalisations of the classical concepts on the natural numbers to concepts over
a class K of many-sorted algebras whose domains include the natural numbers;
such structures are called standard algebras. An important class COVIND(A)
of functions on A is that of the course-of-values (coy) inductively definable
ftinctions, formed by combining sequential and parallel composition, course of
values recursion, and least number search. If course-of-values recursion is
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replaced by primitive recursion in this definition then the class IND(A) of
functions obtained is the class of inductively definable functions. In either case,
the functions are defined by a parallel deterministic model of computation. The
simultaneous recursions, which are responsible for this parallelism, are also
required when computing on many-sorted structures. The basic definitions and
theory are taken from Tucker and Zucker [881 in which it is argued in detail
that whilst effective calculability is ill-defined as an informal idea when
generalised to an abstract setting, the ideas of deterministic computation and
operational semantics are meaningful and equivalent and, furthermore, the
following is true:

Generalisation of the Church-Turing thesis for computation
Consider a deterministic programming language over an abstract data type D.
The set of functions and relations on a structure A, representing an
implementation of the abstract data type D, that can be programmed in the
language, is contained in the set of cov inductively definable functions and
relations on A. The class of functions and relations over a class K of structures,
representing a class of implementations of the abstract data type D, that can be
programmed in the language, uniformly over all implementations of K, is
contained in the class of cov inductively definable functions and relations over
K.

We now define the main constructs of course-of-values and primitive recursion.

2.2 Course of values recursion
Let g: An - Am and h: T x An x Am - Am.
Let 8i: TxAn -4 T for i = 1...,p be functions which are subject to the
condition that

bi((t,a),a) < t

for all t in T and a in An.
Then the function f: T x An -4 Am defined by

f(O,a) = g(a)
f(t,a) = h(t, a, f(3 1(t,a),a),. f( 6(t,a),a)))

is defined by (simultaneous) course-of-values recursion of g, h and Si on A.
Let us consider this definition in more detail. Each of the functions g and h

has m coordinate functions
gi: A n --. A
hi: T x Ak x AmP - A.

The functions 8i for i =1...,p,
8i: TxAk -- T

which are subject to the condition that
r (lt,a),a) < t

for all t,a.



The mapsfi for i=l.m are defined by the following:

fj(O,a) = gl(a)

fm(O,a) gn(a)
fl(t,a) = h1 (t,a,(f1(( j(t,a),a),...fm(Sl(t,a),a))).(fj(8~(ta),a),...fm(6 p(ta),a)))

f,(t,a) =hm(t,a,(f l(c31(t,a),a),..,fm(,51(t,a),a))),....f l(3p(t,a),a),.... m(3p(t'a),a))).

Of course the functions g and h need not depend on all the arguments. But in the
case displayed above, each fi depends on t, a, and p previous values of each of

f ..... f "
Let di: T x Ak -, T be any function. Then we can define 3i((t,a,x),a,x) =

min(di(t,a),O) such that 5i((t,a),a) < t.
There are several simple conditions we may impose on the 8i. For instance,

we may assume that a fixed constant delay di is assigned so that
3((t,ax),a,x) = min(t - di , 0).

2.3 Primitive recursion
If we take 6((t,aax),a~x) = min(t -I, 0) then we can rewrite the equations for the
maps as follows.

Let g: An --> Am and h: T x An x AmP --9 Am.

Then the function f: T x An -> Am defined by
f(O,a) = g(a)
f(t+],a) = h(t, a,f(t,a))

is defined by (simultaneous) primitive recursion o" g and h on A.
Let us again unfold this definition to see the simultaneity. Each of the

functions g and h has m coordinate functions
gi: An --> A
hi: T x Ak x Amp -4 A.

The mapsJf for i- /...,m are defined by the following:

fj(0,a) = gl(a)

fm(0,a) = gi(a)
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fl(t,a) = h,(t, a,fj(t,a),....fm(t,a))

fm(t,a) hm(t, a, fl (t,a),.... fm(t,a)).

2.4 Computation on A*
For many purposes it is convenient to present the recursive functions on A
using primitive recursion and the least number search operator on A*. This is
possible because of the following fact:

Lemma Let f be a function on A. Then f e COVIND(A) if and only iff e

IND(A*).

Much new work on translating recursions is necessary: see Simmons [88].

2.5 More on primitive recursion
Let g: An -- An.

Then the function f: T x An --, Am defined by
f(t,a) = g(g(g(...g(a)))) (t times)
f(t,a) = gt(a)

is defined by primitive iteration of g on A.

Lemma Let F be a set of functions on A containing the projection functions
and closed under parallel and sequential composition. Then f is definable by
primitive recursion over elements of F if and only if f is definable by primitive
iteration over elements of F.

3. LECTURE 3: SPECIFICATION IN PROGRAM CORRECTNESS
AND IN LOGIC PROGRAMMING

We consider algorithmic notions of specification using our theory of
computation. We examine specification in two areas and develop the general
concepts afterwards.

3.1 Specification and program correctness
Consider a program S in a programming language P over K. Let S be specified
by input and output conditions pq written in an assertion language L over K.
Let

K /= (p) S [q)
mean that the specification is valid under partial correctness uniformly over K.
Thus, for each a e State(A), if A I=p(a) and M(S)(a) J LY then A /= q(a'),
uniformly for all A E K.

A general question of importance is: How expressive is the a, t; ior,
language L with respect to the programming language P7 Mote spe'if. ally:
Does the assertion language allow us to capture imp(-, r.t et o' ia .s ; -h ac.



the weakest precondition and strongest postcondition? Does the assertion
language allow us to capture the meaning of a program completely? These
questions can be formulated precisely as follows:

Expressiveness question Is wpA(S,q) = [a e State(A): if M(S)(cr) 1 a' then
A (= q(cr')] definable by L uniformly for all A e K?

Determinacy question Let S, S' e P. If for any p, q E L
K /= (p) S [q) if and only if K /= {p} S' [q}

then is it the case that S -S' on K?
(Clearly the converse holds for any reasonable assertion language.)

The computability theory of 2.1 was developed in order to answer the
expressiveness question. Suppose we have formulated some operational
semantics that describes computation in terms of sequences of states. Then we
have a computation relation defined by

COMP(S,crta') if and only if M(S)(q) 1 d via some sequence r =
Urk=&.

And, in particular,
M(S)(cr) .1 e if and only if (3r)COMP(S, a, r,e).

The process of representing this computation predicate in a satisfactory way in
an assertion language L is fundamental. In Tucker and Zucker 1881 it is carried
out in detail for the first order language L(X*) of A* which is, of course, a
weak second order language over A. The method is first to represent
computation by P over A by inductively computable functions and relations
over A*. Then to use the fact that inductively computable functions and
relations are definable in L(Z*).

This representation of the programs of P by inductive functions is in fact a
compiler. In general, proofs of expressiveness are based on the following
principle: if Ptand P2 are programming languages and c: P, - P2 is a
compiler then if P2 is expressive then Pt is expressive.

For information on the Determinacy question see Bergstra, Tiur)n and
Tucker [82].

3.2 Specification, and computation ii, logic programming
A logic programming language is a language for specification and computation
in which the means of computation is deduction in a logical system. More
precisely, a program is a module that uses axiomatic theories expressed in
formally defined logical languages, such as many-sorted first order logic, to
define classes of implementation algebras (recall 2.1). This introduces proof
theory as the basis for the semantics of computation; and, in particular, the
model theory of logical systems as the basis for the semantics of specification.
Unfortunately, the subject of proof dominates research on logic programming,
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mainly in the form of work on practical deduction for implementations, and the
subject of the model-theoretic semantics of specification has hardly been
examined.

Clearly, to create modules we need theoretical accounts of constructing sets,
defining relations, and evaluating functions. Thus research involves a range of
programming paradigms and their integration: functional, relational, logical
and, in its use of modules, object oriented. A relevant discussion is contained in
Goguen and Meseguer [87].

3.3 Relational, functional and logic paradigms
The relational paradigm is for specification and the functional paradigm is for
computation. The connection made in logic programming is of the following
kind:

Let A be a set and R a subset of An+m. A selection function for R is a map
f An -- A m such that Vx[R(xy) =* R(xf(x))].

The result of a logic program is the definition of a relation R and the
computation of some family of selection functions for R. These constitute the
task module of 2.2. A more appropriate general formulation is as follows:

Let T be a theory and let P be a logic program with goal relation R. Then
we want to interpret P in a class K of models of T in order to specify relation R
and compute selection functions f uniformly over some class K.

Thus we want to design P to be valid over a class K of algebras, and to
compute one or more f such that:

KI= Vx[R(x,y) = R(xf(x)).
Note that this central problem of specifying relations and functions is a
motivating problem of classical model theory: quantifier elimination. And that
the problem of computing select.on functions by logical deduction is a
motivating problem of proof theory, and of the programs as proofs paradigm.

3.4 Scope and limits of specification
In Tucker and Zucker [891, the following basic question, related to the
Expressiveness question in 3.1, is asked and answered:

Does Horn clause computability on K, with its nondeterminism and potential
for parallelism, specify all and only the cov inductively definable functions and
relations on K?
The answer requires the basic step of formalising Horn clause computability
over any structure or class of structures. It has been shown that Horn clause
definability is fundamentally stronger than coy inductively definablility in
general. It corresponds with an extension we have called projective cov
inductive definablility.

In the computability theory of 2.1, we define a semicomputable set or
relation R on A or K to be a set that is the domain of a partial computable
function on A or K. It can be proved that R is computable if and only if R and
its complement -R is semicomputable.

A set or relation R is projective semicomputable if it is a projrction of a
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semicomputable set: there is a computable function f: An x Am -- A such that
for all x,R(x) - (3y_-am)Lf(x,y)4].
Turning to course-of-values inductive definability, with Lemma in 3.2 in mind,
we find:

Theorem A relation R is definable by Horn clauses, uniformly over all A* in
K* if, and only if, R is projective coy inductively semicomputable over K*.

Not every set that is projective cov inductively semicomputable over A* is cov
inductively semicomputable over A*. However, in the case of classes of minimal
structures, Horn clause computability and coy semicomputability are equivalent.

These and other results begin to clarify the sense in which Horn clauses
constitute a specification language, for it is possible to define Horn clause
'programs" over certain models that cannot be executed deterministically.
When axiomatic specifications of abstract data types are employed in formal
reasoning about programs it is not always possible to avoid such structures.

3.5 Program specifications and other characterisations
Returning to the discussion in 3.1 we take from Tucker and Zucker [88] the
following:

Theorem A relation R is definable by a ZI formula of L(E*) uniformly over
all A* in K* if, and only if, R is projective cov inductively semicomputable
over K*.

Horn clause definability is equivalent to several other characterisations of
nondeterministic models for specification including while-array with
initialisation; while-array with random assignments; and older notions such as
search computability in the sense of Y N Moschovakis, for example. J I Zucker
and I are working on the following general kind of Church-Turing Thesis for
specification to complement that for computation in 3.1.

A general thesis for specification
Consider a nondeterministic programming or algothmic specification language
over an abstract data type D. The set of functions, and relations, on a structure
A, representing an implementation of the abstract data type D, that can be
expressed in the language, is contained in the set of selection functions for
projective inductively definable relations, and projective inductively definable
relations, on A*, respectively. The class of functions and relations over a class
& of siructures, representing a class of implementations of the abstract data type
D, that can be expressed in the language, uniformly over all implementations of
K, is contained ,n the class of selection functions for inductively definable
r lh,:ibs, and projective inductively definable relations, over K*, respectively.



This is a more complex task: for many more details see Tucker and Zucker
[89].

3.6 Applications
This work on logic programming is relevant to the development of the concept
of a logic programming module that generalises the abstract data type module.
There is a close connection between logic programming modules and algebraic
specification modules: see Goguen and Meseguer [841, Tucker and Zucker [89]
and Derrick, Fairtlough and Meinke [89]. This idea of a module is, of course,
many sorted. Many sorted logic programming has been studied in depth by
Walther [87] and Cohn [87], motivated by theorem prover efficiencies made
possible by typing. See Derrick and Tucker [88] for a general discussions of
these issues.

4. LECTURES 4 & 5: SYNCHRONOUS CONCURRENT
ALGORITHMS, PARALLEL DETERMINISTIC COMPUTATION,
AND HARDWARE

A synchronous concurrent algorithm (sca) is an algorithm based on a network
of modules and channels, computing and communicating data in parallel, and
synchronised by a global clock. Synchronous algorithms process infinite streams
of input data and return infinite streams of output data. Examples of scas
include: clocked hardware; systolic algorithms; neural nets; cellular automata;
and coupled map lattice dynamical systems.

4.1 A general functional model of synchronous concurrent
computation

To represent an algorithm, we first collect the sets Ai of data involved, and the
functionsfi specifying the basic modules, to form a many sorted algebra A. To
this algebra we adjoin a clock T=(O,l .... ) and the set [T-- Ai I of streams,
together with simple operations, to form a stream algebra A as in 2.5.1. This
stream algebra defines the level of computational abstraction over which the sca
is built.

A sca implements a specification that may be a mapping of the form
F: [T-JA n] --- [T--AmJ

called a stream transformer. The network and algorithm is then represented by
means of the following method.

Suppose the algorithm consists of k modules and, for simplicity, that each
module has several input channels, but only one output channel. Suppose that
each model is connected to either other modules or the input streams.

Let us also suppose that each module produces an output at each clock cycle.
To each module mi we associate a total function Vi: T x [T --" An] x Ak --o A
which defines the value Vi(t,a,x) that is output from mi at time t, if the

12
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algorithm is processing stream a=(a I ...,ak) from initial state x=(x,,....xk). The
behaviour of the algorithm is represented by the parallel composition of
functions V1,..., Vk.

More precisely, suppose that each module mi has p(i) input channels, 1
output channel, and is specified by a function f: AP() --) A. Suppose that the
module mi is connected to the modules mf(j,1).mp(ip(i)) or to input streams
a/(L,l)...aip)).

We will assume that there is a delay along the channels that is specified by
* functions

31j: Tx[T -4-An] xAk -4 T
which are subject to the condition that

I3iJ(t,a~x),a~x) < t
for all t,a~x. The maps Vi for i--1....k are defined by the following:
For any i,

Vi(O,ax) = xi .

For i an input module,
Vi(t,a,x) = f(a(i,l)(l(t,ax)). p(i))(ip(i)(t,ax))).

For i another module,
Vi(t,ax) = f(Vp(i,1 )(6i,l(ta.x),ax).... Vp(ip(i))(8i,p()(t,ax),ax)).

This represents a simultaneous course-of-values recursion on the stream algebra
A.

4.2 A constant delay model
There are several simple conditions we may impose on the Jij that directly
reflect operational properties of the module, channels or network. For instance,
we may assume that a fixed constant delay dij is assigned to each channel so that

iJ((t~a,x),aA) = min(t- did, 0)
and the algorithm is given by these equations for the maps Vifor i=1....k:

Vi(t,a,x) = xi for t < dij + I

Vi(t,ax) = f(ap,)(t- dij),. ap(ij(i))(t- dij))

Vi(t,aAx) = f(V#(,1 )(t - dijax). Vp(ip())(t - dij,a.x))

4.3 A unit delay model
If we take dij = 1 then 6i (t,ax),ax)= t - 1 and we can rewrite the equations
for the maps Vi for i=),...k:

V,0.a.x) = x

13



Vi(t+l,ax) = f(ap(i,1)(t .... a#(ip(i))(t)

Vj(t+J,a~x) = f(Vp(q,j)(ta,x),.... Vp(i,p()(t,ax) )

This is a simultaneous primitive recursion over A.

By the theorem in 2.4 there is a sense in which the general model in 4.1 and the
unit model in 4.3 are equivalenL

Let us note that we have considered computation over a single algebra A
and its stream algebra A. In practice the above discussion invariably applies to
a class of algebras. For example, often in the case of systolic algorithms, we
design for the class of all initial (= standard) models of an axiomatisation of the
integers or characters; or for some subclass of the class of all commutative
rings.

4.4 Applications to hardware of the unit delay model
Much of my research arose from the aim to create a unified and comprehensive
theory of hardware design based on the concept of a sca and the methods and
tools of algebra. To achieve this, B C Thompson and I have concentrated on the
simple unit delay case which is already general enough to treat a huge number
of interesting examples. The emphasis has been on case studies that evaluate
practically applicable formal methods and software tools, and are useful in
teaching. The programme can be divided into the following categories:

4.4.1 Models In addition to the functional model based on simultaneous
recursive functions on A, which is suited to work on specification and
verification, other models have been considered in the unit delay case:

(i) A von Neumann model based on concurrent assignments and function
procedures on A; this is suited to work on programming, simulation and
testing.

(ii) A directed graph model based on A; this is suited to work on architecture
and layout.

Some models from each of these families have been formally defined by means
of small languages, and, in particular, proved to be computationally equivalent.
In formulating and classifying models of synchronous computation we are
following the pattern of work associated with computability theory and which
ends with a Church-Turing Thesis to establish the scope and limits of parallel
deterministic models of computation: see 4.5. The idea of a multi-
representational environment, in which it is possible to intercompile between
representations depending on one's work in the design of the algorithm, also
motivates our work.

See: Thompson and Tucker [85, 88, 89], Thompson [871, Meinke and

Tucker 1881 and Meinke [88].
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4.4.2 Specification of scas and hardware A substantial study of the
specification of seas and their r6le in the process of designing hardware is
underway. An important contibution is a very simple mathematical theory of
clocks, and retimings between clocks, based on the following notions:

A clock is an algebra T=((0,1,2,...)/ 0, t+]). A retiming of clock T to clock
T' is a function r: T-4 T" such that (i) r(O)=O; (ii) r is monotonic; and (iii) r is
surjective.

Some theoretical results have been obtained on nonlinear retimings,
hierarchical design, and synchronising clocks but the main interest remains the
application of the theoretical concepts in detailed case studies of the design of
correlators and convolvers; counters; uarts; computers (including RISCII and
VIPER).

The emphasis in this area is on the rigorous analysis of methodological
models and practical formal methods. Very general methodological
frameworks, based on formally defined notions of specifications as stream
transformers over many sorted algebras, and their consistent refinement, have
been developed.

See: Harman and Tucker [87, 88a, 88b] and Hobley and Tucker [891.

4.4.3 Derivation The systematic and formal derivation of scas have been
studied in connection with rasterisation algorithms: see Eker and Tucker [87,
88, 89]. However, derivation is an area that requires further work. There is a
large literature on developing systolic algorithms of various kinds, but much of
it is ad hoc, informal, and application specific. Nevertheless research by H T
Kung, P Quinton, and the more formal work of C Lengauer provide us with a
platform on which to build an analysis of the algorithm design process that
complements our analysis of the specification design process of mentioned in
4.4.2. Studies in the transformation of scas have been initiated in connection
with a theoretical analysis of compilation of functional to graph descriptions.
Using equational specifications for data types and term rewriting techniques,
optimising transformations for scas have been defined as preprocessors to
simple, but verified, compilers: see Meinke [881.

4.4.4 Verification of algorithms. The functional model is beautifully
suited to verification and a substantial study of the verification of scas, based on
that model, is well underway. A large number of case studies of hardware, and
systolic algorithms (for linear algebra and string- processing), have been
verified: see Thompson and Tucker [85, 891; Hobley, Thompson and Tucker
[881; and, in particular, Thompson [871.

In the light of this it is tempting to create independent software tools for
verification, customised to our theories and techniques. However, we see that
the mathematical concepts and methods are of use in many existing approaches
to machine assisted formal verification, including those of K Hanna, N Daeche
a-r' M Gordon (HOL, based on Church's type theory); R Constable (Nuprl,

i t5



based on Martin Lofs type theory); and J Goguen (OBJ, based on term

rewriting). Thus work with a number of existing theorem provers would be
more useful for demonstrating the usefulness of our tools. We have begun
work with Nuprl: see Derrick, Lajos and Tucker [89].

Of course, the logical foundations of the mathematical techniques are based
on the use of many sorted first order logic found in Tucker and Zucker [881.

4.4.5 Algebraic specifications The recursive functions are closely related
to equational logic and algebraic specification techniques based on initial algebra
semantics. (And these in turn are easily related to Horn clauses and logic
programming techniques). This is the subject of much research with J A
Bergstra about the power of algebraic specification techniques to define
computable algebras of various kinds: see Bergstra and Tucker [79, 80, 83, 871,
for example. With a general theory of computability the relevance of some of
those ideas and techniques used in the proofs is revealed more clearly; and they
are found to have practical application! As part of our work for a definitive
paper on the unit delay model, B C Thompson and I have been using a
generalisation of one of the simplest lemmas in Bergstra and Tucker [80] (which
was published as Bergstra and Tucker [87]).

Let program algebra Af be A augmented by all the subfunctions involved in

the definition of f, obtained from its parse tree as a primitive recursive function
in a certain straight forward way.

In the terminology of 2.2, A is the component algebra, Af is the program

algebra and (Af) is the task algebra.
Let (f, Ef) be the signature and equations obtained by adding the

corresponding names for these functions and equations obtained from the
definition of the primitive recursive function f.

Theorem Let (.r, E) be an algebraic specification of the component algebra A.
Let f be a primitive recursive function over A. Then the program algebra Af -
(,f, Ef) and hence (Xf, Ef) is an algebraic specification for the task algebra
(Af).

Using a detailed proof of this fact, the functional definition off over E can be
mapped or compiled into an algebraic specification (Ef, Ef).

We can now work on the application of the proof of this result: we take
scas, represented by primitive recursive functions over stream algebras, and
map them into algebraic specifications, in preparation for machine processing.

Corollary Let (Xr, E) be an algebraic specification of the stream algebra A.
Let V be primitive recursive over A. representing a sca. Let program algebra
&v be 4 augmented by all subfunctions involved in the definition of V. Let

(XV, EV ) be the signature and equations corresponding with the primitive
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recursive function V.
Then the program algebra A V _(Ev,E V) and hence (Lv,Ev) is an

algebraic specification for the sca algebra (A, V).

Some prototype programs based on the algorithmic nature of the proof of the
theorem have been constructed and applied to scas by B C Thompson.

This material will be included in a definitive paper on the unit delay model:
Thompson and Tucker [89). I may add that this machinery provides a huge
number of algebraic specifications that are not related to the stack: clocked
hardware; systolic arrays; cellular automata; neural nets, for instance!

The nature of the stream algebras have inspired a special theory of higher
order algebraic specifications: see Meinke [1989].

4.4.6 Software tools A detailed design of a programming language and
programming environment based on the von Neumann model (i) has been
undertaken, and a prototype system has been constructed. This system includes:
the language, which is called CARESS (for Concurrent Assignment
REpresentation of Synchronous Systems); a C compiler; a preprocessor; and an
interactive tracing/debugging tool. The prototype is robust and convenient
enough to have been used in undergraduate teaching. A multilingual shell for
animating, editing and debugging specifications of scas has been built. With this
tool, it is possible to test specifications against their scas automatically. A test
compiler from a functional notation for the recursive functions to Caress has
been made. See Martin and Tucker [87].

4.5 Toward a general theory of synchronous concurrent
computation

The Generalised Church-Turing Thesis applies to delimit the class of
computable functions over any algebra or class of algebras: the class is
identified by COVIND(A) or IND(A*). Thus we have a tool to speed us toward
the goal of establishing the scope and limits of synchronous computation in
hardware by devising an appropriate generalisation of the Church-Turing
Thesis. This synchronous computation is further identified with the notion ofparallel deterministic computation over abstract data types with streams. A
string transformation F: [T -#An] - [T--*Am] is identified with its cartesian
form F: [T -An] x T-- Am in COVIND(A) or IND(A*).

However, our interest in scas, and deep involvement with their applications,
requires a comprehensive and independently justifiable theoretical foundation.
Thus full generalisations of the different models are needed to allow for more
complex processing elements and timing characteristics; and these models must
be compared with one another and classified by constructing compilers. A
meticulous study of the equivalence of the concurrent assignment model and the
unit del.ky model is made in Thompson [87]; here there is an emphasis on
compiler correcmess, and performance is included in the analysis. A general
,iudy o equivalence of the graph model and other models is made in
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Meinke (881; see also Meinke and Tucker [881.
A central problem is to understand partiality in terms of scas, which affects

all aspects of the theory.
It is possible to model asynchronous nondeterministic computation in terms

of synchronous deterministic computation in several ways. In a sense this was
done for nondeterministic data flow by D Park, for example. The study of the
nondeterminism and asynchrony as abstractions of determinism and synchrony
is an important foundational task that has applications in practical modelling of
hardware.

Extensive research on the functional model and its connections with
equational specifications of modules, and with logic programming techniques, is
necessary in order to support work on verification and software tools.
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